GREEN BELT ABBREVIATIONS AND OTHER SUMMARY:

- 1. VOC Voice of Customer
- 2. CTQ Critical to Quality (Characteristics)
- 3. CTP Critical to Process (Inputs & Factors)

4. RCO Prevention

- Reduce Chance of Occurrence: Does not Allow defect to occur.

5. ICD Prevention

Increase Chance of Detection:
 Warning arrangement to warn us before defect occurs.

- 6. C.A.: Corrective Action
- 7. P.A.: Preventive Action
- 8. Q (PQ + SQ): Quality (Product Quality + Service / Support Quality)
 C: Cost
 D (S): Delivery (Schedule).
- 9. DMAIC: Define Measure Analyze Improve Control.

10. SIRPORC (SIPOC):

Supplier – Input – Requirements (of Process) – Process Substep –Output – Requirements (of Customer) – Customer

11. MSA:

Measurement System Analysis for calibration before measurement / collection of data.

12. RVA: Real Value Addition

BVA: Business Value Addition

NVA: Non Value Addition

- 13. SOP: Standard Operating Procedure
- 14. WI: Work Instruction
- 15. PDCA: Plan Do Check Act (Developed by Dr. Deming)

16. Tollgate Review:

Review carried out jointly by Champion, BB, GBs during the DMAIC phases.

17. FMEA: Failure Mode & Effect Analysis (Used for Risk Assessment & Risk Reduction).

a) <u>Central Tendency</u>:

* Mean:

The mean is the **average reading of the** values within a data set.

- * **Median:** is the <u>Midpoint</u> of the distribution of the data i.e. 50% readings above and 50% readings below.
 - If number of data points (n) is even,
 then median is the average of the n/2 th and (n/2 +1) th reading.
 - If number of **data points (n)** is odd, then median is the (n + 1)/2 th reading.
- * Mode: The most often occurring value in the data set.
- **b)** Range = $(X \max X \min)$ represents = **spread** of the distribution.
- c) Standard Deviation represented by Greek letter Sigma (σ) or "s":

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N}}$$
 for a **Population** data.

Where: \mathbf{N} = number of observations (<u>population size</u>).

$$\mathbf{s} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{(n - 1)}} \text{ for a sample data.}$$

where, $x_1\,$, $x_2\,$, ------ $x_n\,$ are the observations

and \mathbf{n} = number of observations (<u>sample size</u>).

d) Defects Per Unit (DPU) and DPMO:

DPU is the number of defects in a given unit of product or process.

DPU = <u>No. of defects</u> No. of units processed

Defects Per Million Opportunities (DPMO):

DPMO = **DPU x** <u>1,000,000 (1.0 Million)</u> Opportunities for error in that unit

e) Total Cost of Quality:

TOTAL COST OF QUALITY						
Cost of Non-Conformance (Cost of POOR Quality)		Cost of Conformance				
Internal Failure Cost	External Failure Cost	Cost of Appraisal	Cost of Prevention			
+ Hidden Cost	+ Hidden Cost					

f) Seven Tools of Quality:

FLOWCHART – MAKES PROCESS STEPS VISIBLE

- VALUE ANALYSIS, APPRAISAL, PREVENTION

CHECKSHEET – DATA RECORDING DEVICE (COUNT DATA)

PARETO CHART – PRIORTIZATION TOOL (COUNT DATA)

- VITAL FEW, TRIVIAL MANY - HELPS TO FIND ROOT CAUSES

- HELPS TO FIND CTQs and CTPs

HISTOGRAM – FREQ. OF DATA DISTRIBUTION (FOR CONTINUOUS DATA)

- CENTRAL TENDENCY: MEAN / MEDIAN / MODE
- RANGE
- MULTI MODES.

FISHBONE DIAGRAM – BRAIN STORMING

- ROOT CAUSE ANALYSIS

- MULTI-VOTING (NOMINAL GROUP TECHNIQUE)

CONTROL CHART – TO CHECK IF PROCESS IS CAPABLE

- TO CHECK IF PROCESS IS IN CONTROL.

SCATTER DIAGRAM – CORRELATION BETWEEN TWO VARIABLES [RELATION OF CTQ WITH CTP(s)]

- CORRELATION COEFFICIENT (r).

g) Co-relation Coefficient – How to Interpret:

Strong Co-relation	Weak Co-relation	No Co-relation
Most of the points in Scatter Diagram are very close to the best fitting line.	Most of the points in Scatter Diagram are far from the best fitting line.	You cannot draw any type of best fitting line.
Co-relation Coefficient 'r' lies between - 0.7 to -1.0	Co-relation Coefficient 'r' lies between	Co-relation Coefficient 'r' lies between
OR 0.7 to 1.0	- 0.3 to – 0.69 OR 0 3 to 0 69	0.0 to – 0.29 OR 0.0 to 0.29
СТР	NOT CTP	NOT CTP

h) Short Term Process Capability Index:

 $Cp = SW / PW = SW / 6\sigma$

Where: Specification Width (SW) = USL - LSL

Process Width (<u>PW</u>) = UCL – LCL = 6σ

PROCESS IS SAID TO BE CAPABLE ONLY IF $\underline{Cp \ IS > 1}$.

i) Long Term Capability Index:

Cpk = Minimum (Lower) of:

<u>USL – Mean</u> OR Mean – LSL

3σ

3σ

PROCESS IS SAID TO BE CAPABLE ONLY IF Cpk IS > 1.

j) Kano Model:

Figure -1: the Kano model

Method:

Kano developed a structured user-questioning methodology to help characterize different features and remove ambiguity by ensuring that categorization is based on user research.

<mark>k) F.M.E.A.:</mark>

Risk Priority Number (RPN) = Severity x Occurrence X Detection

Rating Scale:	Very High 🚽	Very Low:
* Severity	:10 → ·	1
* Chances of Occurrence	:10 → ·	1
* Chances of Detection	:1 → 10)

www.aiqmindia.com